Videoconferencing Security and Privacy

An Overview of Best Practices

Klaus Möller

WP8-T1

Webinar, 28th of September 2020

Public

www.geant.org
Videoconferencing (VC) Systems

• Not only video and audio
 − Screen sharing (for presentations)
 − Collaboration (editing of documents)
 − Text chat
 − File transfer
 − Integration into task management software, etc.

• Multitude of products
 − Zoom, Webex, Whereby, Pexip, Facebook, Google Meet, Microsoft Teams, ...

• Have become indispensable tools in pandemic lock-downs
Do you hate your Firewall Administrator?

• Prank: Lets play a round of “annoy-the-admin”
 - Go to your network administrator when they are a bit stressed
 • Just a little tense, but still willing to answer questions
 - Ask her/him: “I need your help with getting this videoconferencing app to work over our firewall/NAT-gateway”
 • Use a currently unsupported/unknown one, of course
 - Duck!

• Just kidding, of course
 - No responsibility taken for lost accounts, etc. :)
 - You owe them something next sysadmin appreciation day (at least)

• But if this sounds familiar, why is it so?
Videoconferencing as seen from the Network

• A multitude of protocols needed
 - Call setup, control: SDP, SIP(S), H.320, H.323, ...
 - Video/Audio/Data transfer: RTP(S), RTCP(S), (S)RTSP, RTMP(S), ...
 - Resource Reservation: RSVP, DCCP, ...
 - NAT/Firewall Traversal: ICE, STUN, TURN, H.460, ...
 - More proprietary protocols

• So far, time-consuming, but doable
 - Multiply by the number of VC systems in use
Videoconferencing & Security Headaches?

- VC Data transfer protocols (RTP & Co)
 - Have to be reachable on random ports from the internet
 - No problem if participants are directly connected

- Firewalls and NAT gateways get in the way
 - Stateful Packet filters and NAT Gateways will block incoming packets
 - Unless the client has send a packet in the opposite direction **before**
 - But the client doesn’t know from where a call will be coming
 - In other environments, firewall blocks all traffic, except to/from proxies

- Solution: NAT (and Firewall) traversal protocols
 - Interactive Connection Establishment (ICE)
 - Basically a combination of STUN and TURN
Videoconferencing Connection Diagram (w/o NAT)
Session Traversal Utilities for NAT (STUN)

- Simplified: An elaborate way of knowing your external IP-address
 - Think of whatismyip.com, but without http(s)
- Tells also if you can be reached at a given port number
- Insider attack scenario
 - Spoofing STUN messages to expose ports of other internal systems
 - Using IP-addresses and ports of other internal systems
 - Should not happen if STUN is authenticated properly
- Information disclosure
 - STUN server knows about your internal IP-Addresses
 - Can you trust external operators (VC provider, Google, Cloud*)?
Traversing Using Relays around NAT (TURN)

- Think of it as a sort of reverse proxy for VC clients
 - Client connects/registers with (local) TURN server
 - TURN server has public IP-address, can thus accept incoming calls
 - Often from other TURN servers
 - Knows where to relay the call to

- Usually run by the videoconferencing provider

- If run locally
 - Can be used to simplify/tighten firewall rules
 - Random ports/connections only to the TURN server
 - Internal IP-addresses stay undisclosed
 - TURN server needs to be in an unprotected network or DMZ
Videoconferencing Connection Diagram (w/ NAT)
WebRTC

- Do all the VC client stuff from the browser
- May leak internal IP-addresses through STUN
 - See browserleaks.com WebRTC leak test
- Has the same connectivity problems as a VC appliance
 - Will work on public networks (i.e. your mobile phone/tablet)
 - Or behind simple NAT gateways (i.e. your home router)
- Not needed for many VC systems
 - If so, can turn WebRTC off in the browser
 - WebRTC Control Extension (all browsers)
 - about:config in Firefox-based browsers (see References)
Videoconferencing Systems that don’t use WebRTC

• These are the most common today
 – Zoom, WebEx, Whereby, ...

• Admins like them because
 – Use HTTPs for everything
 – All we need here are proper proxy settings
 – All traffic goes through their servers (no P2P)

• Things just work

• And we can pretend it’s secure
 – Because HTTPS
 – And VC provider says so
Example: GÉANT Zoom Session

- As seen from a client

<table>
<thead>
<tr>
<th>State</th>
<th>Recv-Q</th>
<th>Send-Q</th>
<th>Local Address:Port</th>
<th>Peer Address:Port</th>
<th>users:(({"zoom",pid=12161,fd=93}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTAB</td>
<td>0</td>
<td>0</td>
<td>10.0.6.4:59544</td>
<td>185.174.117.137:443</td>
<td></td>
</tr>
<tr>
<td>CLOSE-WAIT</td>
<td>32</td>
<td>0</td>
<td>10.0.6.4:47010</td>
<td>52.202.62.244:443</td>
<td>users:(({"zoom",pid=12161,fd=34}))</td>
</tr>
<tr>
<td>ESTAB</td>
<td>0</td>
<td>0</td>
<td>10.0.6.4:59540</td>
<td>185.174.117.137:443</td>
<td>users:(({"zoom",pid=12161,fd=91}))</td>
</tr>
<tr>
<td>ESTAB</td>
<td>0</td>
<td>0</td>
<td>10.0.6.4:59542</td>
<td>185.174.117.137:443</td>
<td>users:(({"zoom",pid=12161,fd=92}))</td>
</tr>
<tr>
<td>ESTAB</td>
<td>0</td>
<td>0</td>
<td>10.0.6.4:59538</td>
<td>185.174.117.137:443</td>
<td>users:(({"zoom",pid=12161,fd=90}))</td>
</tr>
<tr>
<td>ESTAB</td>
<td>0</td>
<td>0</td>
<td>10.0.6.4:59536</td>
<td>185.174.117.137:443</td>
<td>users:(({"zoom",pid=12161,fd=70}))</td>
</tr>
<tr>
<td>ESTAB</td>
<td>0</td>
<td>31</td>
<td>10.0.6.4:59534</td>
<td>185.174.117.137:443</td>
<td>users:(({"zoom",pid=12161,fd=67}))</td>
</tr>
<tr>
<td>ESTAB</td>
<td>0</td>
<td>0</td>
<td>10.0.6.4:59530</td>
<td>185.174.117.137:443</td>
<td>users:(({"zoom",pid=12161,fd=65}))</td>
</tr>
</tbody>
</table>

ss -antp

host 185.174.117.137
137.117.174.185.in-addr.arpa domain name pointer mmr137-117.zoom.nordu.net.
host 52.202.62.244
Encryption

• Protects the confidentiality and integrity of exchanged data
• Most desirable: End-to-End Encryption (E2EE)
 – Streams get encrypted at the sender and decrypted by the receiver
• Second best: Transport Encryption (most often: TLS)
 – Stream is encrypted on the way to the server, but unencrypted there
• Watch out, however
 – Is encryption used by default?
 – And for what streams?
 – What crypt-algorithms/key lengths are used?
 – Forward Secrecy?
 – Key management?
What Meeting Attendees can do

- Keep your Videoconferencing software Up to Date
- Configure your audio/video settings
- Beware of your surroundings
- Don’t share Invites
- Don’t make recordings
Keep the VC Software Up-to-Date

• On self-administered systems
 – Lookout for Updates regularly (at least once/week)
 – Use features from client SW for auto-updates
 • Like checking automatically when the client is started
 – Use Update channels from the OS Vendor
 – Use Update Manager if both of the above not available
 • I.e. “SUMo”, “Patch My PC”, etc.
 – Alternatively (if possible): Use Web-Client (i.e. web-browser)
 • Pro: Browsers get timely updates (~ 1/month)
 • Con: Browsers huge attack surface

• When told to patch or update: Do it as soon as possible!
• Don’t forget to restart the software after updating
Configure the Audio/Video Settings appropriately

- When joining a video conference
- Client Preferences should be set to
 - No Video
 - Audio Mute
- Enable only when you speak
- You may accidentally leak sensitive/private information
- If you want to be extra secure
 - Cover up camera (tape/shutter)
 - Use a microphone with a true hardware OFF switch
 - Use headset instead of speaker
Beware of your Surroundings

• TV5Monde hack anyone?
 - French TV station got hacked in 2015
 - Password visible in background during broadcast (TV, not VC though)
 - Station was taken off the air (temporarily)

• Morale: Make sure that nothing sensitive is visible in the background
 - Empty black-/whiteboard, pinwands, monitors, etc.
 • Plain color works best, esp. with virtual backgrounds
 • Otherwise, parts of the real background may shine through
 - Beware of mirrors and mirroring surfaces behind you!

• This rule applies to Audio too!
 - Close the door/windows
 - Activate background noise reduction for the microphone (if possible)
Beware of your Screen(Background)

- To prevent leaking information during screensharing
- Limit Sharing to one application window
- Share whole desktop only when needed
 - I.e. (full-screen) presentations
 - Multi window demonstrations
- Put all shared programs on one screen/desktop
 - When using multiple screens/virtual desktops
- Close all other programs not needed during the conference
 - You may accidentally expose data on these windows
 - Including window titles
 - Taskbar shows info/preview on mouseover
 - Even for windows on other screens/desktops
Don’t share Invites

- When sharing invites publicly, it’s like inviting everybody
- OK, then everybody can come
 - Inevitably, people will come that don’t belong here
 - C.f. “Zoombombing”
- Ask the organizer if you want to bring along others
Don’t take screenshots

- Or make audio/video recordings, or record text chats
- Likely against the law if meeting is non-public
 - Consequences will depend on the legislation in your country
 - But this is usually not a petty offense
- Other laws and disciplinary action may also apply
 - Violation of privacy laws will probably be your least problem
- Yes it can be done without the others noticing
 - When you use other tools than the VC client
- Ask for permission (opt-in of all attendees)
 - One attendee who does not consent may mean you’re not allowed to
- No streaming/recording without permission either
What Meeting Organizers can do

• Everything an Attendee should do
• Require authentication for joining meetings
• Review attendees
• Eliminate disruptors
• Lock the conference
• Inform if recording
• Disable screenshots/recordings
Require Authentication for Conferences

- When setting up a conference, require passwords or other authentication
- Room numbers may not be very random
 - And a name like “my meeting” certainly is guessable
 - Zoom meeting room numbers used to be 9 digits
 - Attackers have no trouble trying a couple of billion numbers
 - Scripts & botnets
- If the name/id/number is public, choose a good password
- Consider distributing conference link and password through different channels
Review Attendees

- Make sure that no one is on the list that is not invited
- Visually identify known persons (for sensitive matters)
- If there’s someone your don’t know – ask what she’s doing here
- Throw them out, unless they have reason to be here
- Careful though, esp. with shared meeting spaces
 - You had reserved this room for this time slot, right?
Eliminate Disruptors / Lock the Conference

- If people misbehave in a conference – kick them out
 - Ban them from re-joining (if supported)
 - Or revoke their credentials
- Locking: Nobody can enter the conference anymore
 - Keeps out unwanted attendees
 - Prevents kicked/banned attendees from re-joining
 - However: late-comers can’t join
 - Nor can those who had network problems and disconnected
 - You may want to watch your IM or E-mail to let them back in
Inform beforehand if recording/streaming

• Otherwise, see attendees a few slides before
• Get consent!
• Good practice:
 – Tell why you are recording
 – What will be done with the recording
 – How long will the recording be kept
 – Where will it be kept
 – Who will have access to it
 – Etc.
• If the recording contains sensitive data, secure access/storage
 – Authentication, Encryption
Disable Screenshots/Recordings

• Organizer can disable screenshots/recordings for attendees
• Affects only the client software,
• Attendees may record with other tools
• However, it makes the policy clear
• Also: wipe shared whiteboards, etc.
 – After the meeting ends
 – If on providers VC cloud space
• If third-party tools are required, inform beforehand about it
 – So needed programs/browser-extensions can be tested/reviewed
What have you learned?

- Why configuring networks for videoconferencing may be hard
- What to look for when selecting a good VC software/provider
- What you have to do to keep video conferences secure
 - As an organizer
 - As an attendee
Thank you

Any questions?

Next module: Office Security & Privacy

30th of September 2020

www.geant.org
References

- “A Norwegian school quit using video calls after a naked man ‘guessed’ the meeting link” https://techcrunch.com/2020/03/26/norwegian-school-whereby

- Tips for Secure Video Conferencing (Zip file to download) https://www.sans.org/sites/default/files/2020-04/Video%20Conference%20Tips%20Rev.zip

- Patch My PC Update Manager: https://patchmypc.com/

- WebRTC settings for Firefox: https://wiki.mozilla.org/Media/WebRTC/Privacy

- WebRTC Control Extension: https://mybrowseraddon.com/webrtc-control.html

RFCs

- Session Description Protocol (SDP), RFC 4566: https://tools.ietf.org/html/rfc4566
- RTSP over TLS (RTSPS), RFC 7826: https://tools.ietf.org/html/rfc7826
- Interactive Connectivity Establishment (ICE), RFC 8445: https://tools.ietf.org/html/rfc8445
Standard Port Numbers for SIP, STUN & TURN

- SIP: 5060 UDP & TCP
- SIPS: 5061 UDP & TCP
- STUN, TURN: 3478 UDP & TCP
- STUN, TURN over D(TLS): 5349 UDP & TCP